

AN-4

Using the Tap Tempo
Experimental

Noize

©2020 Experimental Noize an-4

Using the Tap Tempo

The FXCore has a built in tap tempo function that provides the number of samples between two

successive taps. In addition to this count it will debounce the tap input and can indicate if the tap

button is being held down or what we call in a “sticky” state.

The following special function registers (SFRs) are available to the user, some are read only

other can only be set in the program header, etc.:

TAPTEMPO : This is read only and it the count in samples between two successive taps.

MAXTEMPO : This is a value in samples that the user can read/write to set the maximum

allowed number of samples between successive taps. This allows the user to set a “time out”

value.

TAPSTKRLD : This value can only be set in the header of a program with a .sreg directive, this

value sets the number of samples a user must hold down the tap button for it to be considered

“sticky”

TAPDBRLD : This value can only be set in the header of a program with a .sreg directive, this

value sets the number of samples to debounce the tap input for.

In addition to the above SFRs the following bits in the FLAGS register are relevant to the tap

tempo mechanism:

FLAGS[5] : TB2nTB1 If equal to 0 then a TB1* event, if 1 then a TB2* event

FLAGS[4] = TapSTKY 1=TAP switch pushed longer than TAPSTKRLD

FLAGS[3] = NewTT 1=A new TAP Tempo value was measured ,valid for 1 sample

period

FLAGS[2] = TapRE 1=The TAP was just released ,valid for 1 sample period

FLAGS[1] = TapPE 1=The TAP switch was just pushed, valid for 1 sample period

FLAGS[0] = TapDB Debounced logic level of the TAP switch

* : TB1 is the first button push and TB2 is the second button push

// Example using the tap tempo – an-4_a.fxc

// This example creates an adjustable delay on channel 0 using

// the tap tempo to control the delay.

// First define a delay line of some length

.mem delay 32767

// Using tap tempo for a basic delay is very simple

// First read IN0 and write it to the delay line

cpy_cs r0, in0

wrdel delay, r0

// Next put the start address of the delay line in r1

wrdld r1, delay

AN-4

Using the Tap Tempo
Experimental

Noize

©2020 Experimental Noize an-4

// Since wrdld loads numbers into the upper 16-bits and

// we need them in the lower 16 do a logical shift right

sr r1, 16

// Result is in acc 32 so save it to r1 for now

cpy_cc r1, acc32

// Read the tap tempo count, count is in sample periods

cpy_cs r2, taptempo

// Now simply add the base address of the delay to the tap count

add r2, r1

// Use the result in acc32 as a pointer into the delay line and

// put the sample in r1

rddelx r1, acc32

// Add the dry signal to the delayed signal

adds r0, r1

// Output it

cpy_sc out0, acc32

This next example is more complex, it start up by using POT0 to set the delay time and reads

the FLAGS register to see if the user entered a tap temp0 (bit 3 the NewTT flag). If the user did

then it switches from using POT0 to using the tapped in value. The program continues to

monitor the FLAGS register and if the user presses and holds tap button for longer than the

“sticky” timeout then bit 4 (TapSTKY) is set and the program will switch back to using POT0 for

the delay time.

// Example using the tap tempo – an-4_b.fxc

// This example creates an adjustable delay on channel 0

// On start the delay is set by POT0, if the user taps in

// a delay we use that and if the user want to go back to

// POT0 then the user holds the TAP button until the

// "sticky" time out

// First define a delay line of some length

.mem delay 32767

// Initialize r9 to 0 to select POT at startup

.creg r9 0

// Read IN0 and write it to the delay line

cpy_cs r0, in0

wrdel delay, r0

// registers are preset on start so if r9 is 0 use POT0

// any other value means use the tap button

AN-4

Using the Tap Tempo
Experimental

Noize

©2020 Experimental Noize an-4

// if we got a sticky on tap 1 switch to POT0

andi flags, 0x10 // bit 4 must be set

jz acc32, next // if not jump past rest

andi flags, 0x20 // we want bit 5 to be 0 so check if it is set

jnz acc32, next // if not 0 then was not tap 1 so jump past rest

andi r9, 0x0000 // if here we got a tap 1 sticky so clear r9

cpy_cc r9, acc32

next:

// decide POT or tap

// Do we have a new TAP count?

andi flags, 0x8 // NewTT is bit 3

jz acc32, no_tap // if no new tap make no change

ori r9, 0x0001 // set the lsb to indicate we now use tt

cpy_cc r9, acc32 // save it

cpy_cs r8, taptempo // get the tap count into r8

jmp do_delay

// if here no new tap but decide if we need to update count from the

// POT

no_tap:

andi r9, 0x0001 // if lsb is 1 then we are in tap mode, no pot

 // update

jnz acc32, do_delay // not 0 so using tap count from above

cpy_cs r1, pot0_smth // read in the pot value to r1

wrdld r2, delay! // get length of the delay

multrr r1, r2 // length times pot

sr acc32, 16 // shift down to lower 16 bits

cpy_cc r8, acc32

do_delay:

// Next put the start address of the delay line in r1

wrdld r1, delay

// Since wrdld loads numbers into the upper 16-bits and

// we need them in the lower 16 do a logical shift right

sr r1, 16

// Now simply add the base address of the delay to the delay

// calculated

add r1, r8

// Use the result in acc32 as a pointer into the delay line and

// put the sample in r1

rddelx r1, acc32

// Add the dry signal to the delayed signal

adds r0, r1

// Output it

cpy_sc out0, acc32

AN-4

Using the Tap Tempo
Experimental

Noize

©2020 Experimental Noize an-4

Experimental Noize Inc. reserves the right to make changes to, or to discontinue availability of, any

product or service without notice.

Experimental Noize Inc. assumes no liability for applications assistance or customer product design.

Customers are responsible for their products and applications using any Experimental Noize Inc. product

or service. To minimize the risks associated with customer products or applications, customers should

provide adequate design and operating safeguards.

Experimental Noize Inc. make no warranty, expressed or implied, of the fitness of any product or service

for any particular application.

In no even shall Experimental Noize Inc. be liable for any direct, indirect, consequential, punitive, special

or incidental damages including, without limitation, damages for loss and profits, business interruption,

or loss of information arising out of the use or inability to use any product or document, even if

Experimental Noize Inc. has been advised of the possibility of such damage.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Experimental Noize Inc.

products are not designed for and will not be used in connection with any applications where the failure

of such products would reasonably be expected to result in significant personal injury or death (“Safety-

Critical Applications”). Safety-Critical Applications include, without limitation, life support devices and

systems, equipment or systems for the operation of nuclear facilities and weapons systems.

Experimental Noize Inc. products are not designed nor intended for use in military or aerospace

applications or environments. Experimental Noize Inc. products are not designed nor intended for use in

automotive applications.

Experimental Noize Inc.

Scottsdale, AZ USA

www.xnoize.com

sales@xnoize.com

